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ABSTRACT 

 

Electrochemical impedance spectroscopy (EIS) is a widely used technique in 

electrochemical systems characterization. Modeling this data is usually done 

using equivalent electrical circuits. These circuits have parameters that need to 

be fitted correctly, in order to enable the simulation of impedance data. 

Furthermore, the circuit fitting can be made for a wide potential range, allowing 

a characterization of the circuit elements evolution according to potential. At 

first, this work presents a sequential fitting methodology with high computational 

cost, using the optimization method Differential Evolution in each applied 

potential. The fitted parameters obtained for each potential step are used in the 

next, accelerating the fitting process and ensuring the smoothness necessary for 

the evolution of the circuit. Then, a parallelized algorithm is proposed for the 

problem, in order to reduce the fitting runtime, keeping the dependency 

relationship among applied potentials. Finally, results show that the parallelized 

algorithm is almost 50 times faster than the original and reaches the correct 

fitted values with the same accuracy. 
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1. INTRODUCTION 
 
The use of electrical equivalent circuits on analysis of impedance data has become the 

main technique for this objective (ORAZEM & TRIBOLLET, 2008). Mathematically simple 

and physically coherent, electrical circuit models have the purpose to represent an 

abstraction of the main features of the studied system, providing important conclusions 

about the involved processes. Each element used in the circuit must have a physical match 

in the electrochemical system. A resistor, for example, can represent the electrolyte 

resistance of the electrochemical cell, while a capacitor may represent the capacitive 

processes occurring in the electrode double layer. Typically, this analogy is made by 

inspection and comparison with results obtained by other independent physico-chemical 

techniques. 

 Different circuits are used according to the application, with their topologies directly 

linked to the characteristics of the involved processes. After identification of the circuit that 

best fits the physical characteristics of the system, a complex nonlinear regression needs to 

be performed to fit the circuit parameters to values closer to the experimental data. Using 

these values allows the EIS data to be used in practical predictions of corrosion 

(SILVERMAN, 1993). 

 The intensity of electrochemical phenomena strongly depends on the applied 

potential. Thus, in some works, especially those studying some specific electrochemical 

mechanism, the impedance measurements are made on several potentials (MATTOS & 

BARCIA, 1990; HU et al., 2004). Furthermore, recent studies (BASTOS et al., 2013; 

KAPPEL et al., 2014) perform the application of the EIS for a wide potential range, providing 

a large amount of experimental impedance data to be analyzed and fitted to equivalent 

electrical circuits. Therefore, it is possible to use not only the transient impedance data in 

the fitting, as well as the stationary response data, available only when a wide potential 

range is used (KAPPEL et al., 2016). 

 The main objective of this work is to improve the existing software of impedance fitting 

and analysis on wide potential ranges (KAPPEL et al., 2015), in order to reduce its 

processing time. This will be done by parallelizing the program logic and running it on a high 

performance cluster. In order to identify the most appropriate parallelizing strategy, a brief 

bibliographical research will be done on the possible parallelization techniques to be applied. 

In addition to improving the speed of execution, the algorithm needs to keep the dependence 



DOI 10.18605/2175-7275/cereus.v10n2p122-136 
Revista Cereus  
ANO V.10/N.2 

Kappel, M. A. A., Fabbri, R., Domingos, R. P., Bastos, I. N. 
Parallelization of the Complex Nonlinear Regression procedure applied 
in electrochemical impedance data for a wide potential range 

 

 

124 

between the circuit parameters in consecutive potentials, besides using the stationary 

response in the objective function of the fitting process. 

 
2. METHODOLOGY 

 
The software that needs to be parallelized applies the optimization method Differential 

Evolution to adjust an electrical circuit model equivalent to experimental impedance data in 

various potentials. For each potential, the impedance varies with frequency. This process is 

performed in a wide range of potential, in order to better characterize the corrosion 

phenomenon. Thus, for each potential, a series of frequencies is applied and measurements 

are made. The measured experimental values can then be modeled by an equivalent 

electrical circuit. The impedance Z is a complex quantity, i.e., has a real and imaginary part. 

In the studied case, the fitting needs to be done in a potential sequence, which leads 

to the necessity to resolve a large number of optimization problems. For each potential, 

impedance data for the whole frequency range are fitted to an equivalent electrical circuit. 

On the current version of the software, the fitting procedure is performed for each potential, 

serially. The results obtained for the lowest potential are used in the next potential, 

increasing the probability of the optimal solution to be found more rapidly, taking into 

consideration that the parameters vary smoothly between sequential potentials. Figure 1 

shows a scheme that represents the adopted procedure. 

 

 
Figure 1. Fitting procedure scheme. 

 
The mathematical model of the equivalent electric circuit used in this work is given by:  
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𝑍𝑒𝑞(𝜔) = 𝑅𝛺 +
𝑅1 +

𝑅2
1 + (𝑖𝜔)𝛼2𝑄2𝑅2

1 + 𝑄1 (𝑅1 +
𝑅2

1 + (𝑖𝜔)𝛼2𝑄2𝑅2
) (𝑖𝜔)𝛼1

 

 

It is desired to obtain the set of parameters 𝑅𝛺, 𝑅1, 𝑅2, 𝑄1, 𝑄2, 𝛼1, e 𝛼2. For this, the 

following objective function must be minimized:  

 

𝑓𝑜𝑏𝑗(𝜔) =∑(𝑍𝑟𝑒𝑎𝑙
𝑐𝑎𝑙𝑐 − 𝑍𝑟𝑒𝑎𝑙

𝑒𝑥𝑝 )
2
+∑(𝑍𝑖𝑚𝑎𝑔

𝑐𝑎𝑙𝑐 − 𝑍𝑖𝑚𝑎𝑔
𝑒𝑥𝑝 )

2

+ (𝑍𝑓=0
𝑐𝑎𝑙𝑐 − 𝑍𝑓=0

𝑒𝑥𝑝)
2
 

 

The ultimate goal is to find the variation of the equivalent circuit parameters according 

to the potential, enabling realistic simulation of electrochemical impedance using the 

equivalent circuit. 

 

2.1. Differential Evolution 
 

Differential Evolution (DE) is a metaheuristic, i.e., a generic form method for solving 

optimization problems, developed by STORN and PRICE (1997). The main idea is to use 

evolutionary operators to modify an initial population of real value vectors, which 

characterizes solution points of the problem space. Then, at each iteration, the algorithm 

provides a new population of the same size until a prescribed stop condition is met. The 

applied operators are: mutation, crossover and selection. There are several possible DE 

variants. The one used in the present work was DE/rand/1/bin. The algorithmic flow of the 

DE operation implemented is shown in Figure 2. 

First, an initial population of possible solutions is randomly created within the search 

space. Each individual represents a solution candidate composed by one real value of each 

parameter to be estimated in the model. The size of the population is defined as a DE 

configuration parameter. For the creation of a new population representing the next 

generation, the mutation operator is initially employed. For each population individual vi, a 

mutant vector vmut is created. The mutation consists of adding the difference, weighted by a 

(1) 

(2) 
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Figure 2. Differential Evolution algorithm flowchart. 

 

factor F, of two randomly selected vectors, v1 and v2, to a third, also random, v3, resulting a 

mutation vector vmut. F is a configuration parameter of DE that controls the amplification of 

the variation of the difference of the vectors. Then, the crossover occurs, where each target 

vector vi on the population, is mixed with the mutation vector, thus generating a trial vector 

vtrial. Finally, selection occurs, the step in which an objective function is applied to the trial 

vector and vi in order to find out the best result. This output becomes the new individual that 

goes to the next generation. This process is done until the stipulated objective is achieved, 

generally characterized by minimization or maximization of a given function. The stop 

criterion adopted in the present work was a fixed number of generations, simulating that the 

optimum parameters are not known. 

 Because it is a direct stochastic search technique, Differential Evolution has the ability 

to deal with non-differentiable, non-linear and multimodal objective functions. This fact is 

extremely beneficial in cases of actual physical problems like the one in this work, which 
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usually have these features. Another good advantage of Differential Evolution is the ease of 

use by requiring the entry of only a few configuration variables. Additionally, a study from 

STORN and PRICE (1997) shows that the method has good convergence properties, 

especially for the global minimum, in independent tests. 

Usually, stochastic optimization methods, such as Differential Evolution, are not 

present among the options provided by the owners of impedance fitting tools. Thus, despite 

its advantages, few studies make use of these techniques in modeling impedance using 

equivalent circuits, such as the reference (SHARIFI-ASL et al., 2013). 

 

2.2. Sequential Implementation 
 

As the original system was implemented in an academic environment, with few 

functionalities and with the need to easily manipulate matrices of complex experimental 

data, the programming language used to develop the software was Scilab. Initially, the 

software reads the experimental data from data sheets. Then, some configuration 

parameters necessary to solve the problem, as the circuit model being used and some 

physical characteristics of the experimental data, are set. 

The optimization procedure is then initiated. The algorithm process the data and calls 

the optimization function. The logic for a wide potential range fitting process is defined in 

this function. First, the program creates an array that represents the initial population of 

solution candidates. Assuming that, in total, 7 parameters are going to be estimated, and 

700 individuals are used in the population, the matrix will have the dimensions 7 x 700, 

where each column vector corresponds to a candidate set of parameters to the solution of 

the problem. In this population, the differential evolution algorithm is applied to the first 

potential data. At each iteration, the genetic operators are applied to the population of the 

matrix, evolving candidates to the solution until an optimum individual is found, which is the 

solution of the problem in the first potential. This solution is then written in an output file. 

In the second potential, the same procedure is adopted, with one difference: the 

solution estimated for the previous potential is inserted into the optimization process. To do 

this, several "clones" of the previous solution are created in the initial population of this 

potential. For example, if the random population consists of 700 individuals, 10 individuals, 

identical to the previous solution, are added in the population, increasing the number of 

columns to 710. This procedure assists the fitting, since individuals near to the optimum are 

already present in the initial population of each potential, after the first. Furthermore, in 
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general, depending on the complexity and number of circuit parameters, different 

parameters can lead to similar responses of the objective function, featuring an ill-posed 

inverse problem (SGURA & BOZZINI, 2005). Using the previous solutions in the fitting of 

the following potential helps ensure that the progress of the found parameters is actually a 

result of real physical development, i.e., it increases the probability of the results obtained 

to be close to each other. Figure 3 exemplifies this process. 

 

 

Figure 3. Flowchart of the sequential implementation functioning. 

 

2.2. Parallelized Implementation 
 

Scilab is not the most efficient choice in terms of run time. Thus, an approach that can 

greatly improve program performance and increase the range of parallelization technology 

options to be used is to re-implement the system on a lower-level language. On the other 

hand, using the parallelization tools available in Scilab itself to reduce the runtime required 

to fit all the impedance data, with minimal impact on the original software, would avoid a 

reimplementation of the software on another language. This is the approach adopted in this 

work. 
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The main purpose of parallelizing the equivalent electrical circuits impedance fitting 

software is to reduce the processing time required for obtaining solutions to all experimental 

data corresponding to a wide potential range. In sequential implementation, the duration of 

the system processing exceeds 20 hours. Increasing the speed to obtain the results is 

required, especially, because of the use of a stochastic optimization method. Due to the 

random component in this type of algorithm, its application must be accompanied by a 

statistical analysis of their results (KAPPEL et al., 2017). In order to do this, it is necessary 

to replicate software executions, making possible to obtain statistical information about the 

fitting, as mean and standard deviation of the parameters, demonstrating that the solution 

provided by the method was not achieved by chance, being statistically valid. 

After careful analysis of the problem, the parallelization strategy chosen for the system 

was the use of threads. Since the system is implemented in Scilab, and in order to avoid the 

rework of converting the entire implementation to a lower level language like C/C++, it was 

understood that the parallelization library Scilab suited well to the needs of this problem. 

 

2.2.1. Parallel Computing with Scilab 

 

Parallel computing using Scilab wasn’t possible until recent years, prior to version 5 of 

the language. Since this version, Scilab provides a number of tools, albeit limited, that 

enable script parallelization, and the use of distributed systems like clusters (BAUDIN & 

LEDRU, 2013). These tools are basically separated into three categories: multithread 

programming, using multicore processors, currently available on practically any computer; 

distributed computing, for use in physically separate computers or clusters, but in network; 

and programming using a graphics card. 

Essentially, there are two multithread programming techniques in Scilab. The first, 

denominated implicit, automatically parallels matrix operations such as multiplication and 

division. Therefore, the first step to be taken in the system parallelization process is to 

refactor the code, trying to replace operations applied in simple variables or vectors for 

matrix operations. Like this, Scilab will automatically use all available processors for these 

procedures, optimizing its operation. The second way is to use the tool “parallel_run” which 

explicitly creates different threads according to the user's desire. Thus, iterative loops as 

“for” can run simultaneously in different threads. In the current version of Scilab, this feature 

still does not work on Windows operating systems, but has good efficiency in Linux systems. 
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Distributed computing can be made using MPI multiprocessing. It is simply needed to 

run the Scilab from the command line using the directive “mpirun”. This kind of solution 

would be useful to simultaneously perform replica of adjustments. In this case, the more 

available nodes in the cluster, the greater the number of replicas that could be executed 

simultaneously. Unfortunately, the documentation available from the MPI for Scilab is still 

very incomplete, not showing how to do simple things, like getting the rank of each process. 

For this reason, this approach has not been adopted in this work, but may be implemented 

further, in future works. 

Programming using graphics cards are available in Scilab through the toolbox 

sciGPGPU. Essentially, this toolbox uses CUDA functions. In this case, this approach was 

not the most suitable because of the very nature of the technique. Normally, graphics cards 

processing is recommended for very thin-grained problems, in which many calculations 

need to be done simultaneously, as in highly complex simulations. In the problem at hand, 

the use of the large number of available threads on GPUs does not bring enough benefit to 

justify its use. The operation of copying the data to the board memory, to process them and 

return them to the main memory brings a further difficulty in programming, which makes it 

necessary further code refactoring. Thus, if a large refactoring needs to be done, it would 

be more advantageous to port the system to a lower level language like C/C++. 

 

2.2.2. Problem Parallelization 

 

In the case of this problem, the parallelization technique adopted is to separate the 

application of the optimization process in each potential in different threads. Thus, all the 

fitting procedures occur simultaneously, dramatically reducing the time required to get 

solutions in all potentials. 

However, as there is dependence on each solution with the previous potential, it is 

necessary to adopt a synchronization strategy in the applications of the optimization method 

Differential Evolution. The idea is that, at each iteration, the best individual of the previous 

potential population is “cloned” to the next potential population. Thus, the fitting made at 

each potential, after the second, uses the best result from the previous potential, improving 

the process as a whole. Figure 4 shows the functioning of this idea. 
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Figure 4. Flowchart of the sequential implementation functioning. 

 

To accomplish this synchronization, it was necessary to use a logic similar to that 

described in (MCKENNEY, 2015) for statistical counters with implementation based on 

arrays. This logic is based on creating an array where each element is the unique counter 

for each thread. Thus, each thread has access to the corresponding counter element in the 

array. As only the very thread accesses that element, the atomicity of the operation is 

guaranteed. 

Similarly, in the problem at hand, a matrix was created in shared memory scope, 

among the threads. This matrix has the number of columns equal to the number of applied 

potentials, that is, the number of optimization problems to be solved simultaneously. Each 

thread will only write in the column that corresponds to the potential being solved by it. The 

columns of the shared array will keep the best solution candidate of their population, at the 

time. At the end of each iteration of Differential Evolution, each thread will write in the matrix 

the temporary best individual of the population. At the beginning of each iteration running on 

threads, each thread will check if there is any value written in the column that corresponds 
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to the previous potential of the shared array. If so, this individual is “cloned” to the thread 

population, which shall consider this solution in its processing. If there isn’t an individual in 

the previous potential, it means that the corresponding thread to such potential has not 

finished running your iteration. In this case, the optimization process continues normally and 

the verification occurs again in the next iteration.  

The biggest advantage of this implementation is in the speed that the full problem, in 

all potentials, is solved, keeping the dependence between the partial results of each 

individual optimization problem. The greater the number of threads used, the faster a 

complete solution is obtained, but the lower is the dependency between individual solutions. 

Thus, it is necessary to make a balance between the need to increase the speed and the 

need for the smooth evolution of the solutions, by the dependency between each potential. 

 

 

3. Results and Discussion 
 

The experimental data used in this work were taken from (KAPPEL et al., 2016). In this 

reference, the sequential implementation of the software was used to fit all the experimental 

data to the equivalent electrical circuit shown in section 2. Figure 5 shows the experimental 

data in the form of impedance maps.  

 

Figure 5. a) Phase angle and b) module of the experimental impedance, overlapped 

by the DC values. 

 

This data set consists of 67 impedance module and phase diagrams, each 

corresponding to measurements made at a different potential. Thus, using the parallelized 

by threads implementation, it was decided that, in this case, the optimal number of threads 
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that corresponds to a good balance between runtime and dependence among the solutions 

was 15. Thus, in the cluster execution, we used only 1 node and 15 cores. 

 Figure 6 shows a schematic of the sequential implementation execution in terms of 

run time. In it, each color represents the optimization process in a potential. The program 

was executed on the author's personal computer, a Dell XPS L502X notebook with 8GB of 

RAM and an Intel i7-2670QM 8-core processor, running Windows 7 Home Premium. In this 

run, the entire process was completed in approximately 23 hours. 

 
Figure 6. Execution of the sequential implementation regarding processing time. 

Each color represents the optimization process in a potential. 
 

The parallelized implementation was executed on the IPRJ-UERJ cluster, a high-

performance system installed and configured on a Dell 44U Rack, consisting of 7 

PowerEdge servants units with 2 Intel Xeon E5-2620 processors each, for a total of 140 

threads available for processing computer simulations. In this case, we used only one node, 

and the number of threads was limited to 15, in order to not lose the dependency between 

the results for each potential. To check the distribution of the optimization processes by 

threads, a statement was placed on the paralleled implementation, so that at every 

beginning and end of a thread execution, the processed potential number is wrote into a file. 

Thus, it was possible to construct the graph in Figure 7, which shows how the parallelization 

logic worked, regarding the total run time. This run has completed the full procedure of 

equivalent circuit fitting in 29 minutes, making the algorithm almost 50 times faster than the 

original. This is due not only to the parallelization of explicit threads, but also to the Scilab 

implicit parallelization due to refactoring of the operations, making the most of matrix 

operations instead of operations on simple variables. 

 Analyzing Figure 7, it is also possible to realize that the execution of the potentials in 

each thread occurs consecutively, meaning that the dependency with the previous potential 

is used in all following optimization processes, except those that are initially processed by 

the threads. After them, all settings will have a good initial information, further accelerating 

the optimization process. 

23 h 
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Figure 7. Execution of the parallel implementation regarding processing time. Each 

color represents the optimization process in a potential. 

29 min 
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Finally, Figure 8 shows the results of simulations using the parameters found by the 

parallelized implementation. Compared with Figure 5, we clearly see that the fitting process 

was successful, since the simulation corresponds very well to the experimental data. 

 

Figure 8. a) Phase angle and b) module of the simulated impedance, overlapped by 

the DC values. 

 
5. CONCLUSIONS 

 

On the present work, a parallelized version of the equivalent circuit fitting procedure 

for multi-potential impedance measures was designed and implemented. For this, the 

parallelization tools provided by Scilab were analyzed and the computing strategy using 

threads was chosen as the most appropriate for the problem at hand. 

Results show that the gain achieved by using the new implementation exceeded 

expectations in terms of run time. In addition, all the strategies of the original fitting 

procedure, such as using the stationary response and the inclusion of the best individual in 

the population of the next potential, remained present in the new parallel version. As the 

optimization problem involved is highly complex, often ill-posed, the preservation of these 

aspects of the original process is essential to achieve good results. 
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